Parallel Computing Solution for Capacity Expansion Network Flow Optimization Problems
نویسندگان
چکیده
In classical linear network flow (LNF) problems, a network consists of multiple source and sink nodes, where each node is a sink node or a source node, but not both. Usually, there is only one kind of commodity flow and the goal is to find flow schedules and routes such that all sink nodes’ flow demands are satisfied and the total flow transmission cost is minimized. We develop a capacity expansion multicommodity network flow (CEMNF) problem, in which the total commodity supply is less than the total commodity demand. There are more than one kind of commodities and each node is a commodity flow generator, as well as a consumer. It is allowed to do expansion for commodity flow generation capacities at each node and also to do expansion for commodity flow capacities of each arc so that more flow can be transmitted among nodes. Thus, CEMNF is not only a commodity flow routing problem, but also a commodity generation and flow planning problem, in which the increasing commodity demands need to be satisfied by generation/transmission capacity expansions. The goal of CEMNF problems is to find the flow routes and capacity expansion plans such that all flow demands are satisfied and the total cost of routing and planning is minimized. High-performance distributed computing algorithms have been designed to solve classical linear network flow (LNF) problems have been proposed. Solving the general CEMNF problems by high-performance distributed computing algorithms is an open research question. The LNF problems can be formulated as linear programming models and algorithms have been proposed to solve them efficiently on distributed computing platforms. But, the constraints of the CEMNF problems do not allow them to solve using the same methodology. In this paper, we also develop a transformation method to transform CEMNF problems into LNF problems in polynomial time and space complexity to solve them efficiently on distributed computing platforms. The results show that we can solve CEMNF problems with high performance.
منابع مشابه
Improved Binary Particle Swarm Optimization Based TNEP Considering Network Losses, Voltage Level, and Uncertainty in Demand
Transmission network expansion planning (TNEP) is an important component of power system planning. Itdetermines the characteristics and performance of the future electric power network and influences the powersystem operation directly. Different methods have been proposed for the solution of the static transmissionnetwork expansion planning (STNEP) problem till now. But in all of them, STNEP pr...
متن کاملScheduling Single-Load and Multi-Load AGVs in Container Terminals
In this paper, three solutions for scheduling problem of the Single-Load and Multi-Load Automated Guided Vehicles (AGVs) in Container Terminals are proposed. The problem is formulated as Constraint Satisfaction and Optimization. When capacity of the vehicles is one container, the problem is a minimum cost flow model. This model is solved by the highest performance Algorithm, i.e. Network Simple...
متن کاملA New ILP Model for Identical Parallel-Machine Scheduling with Family Setup Times Minimizing the Total Weighted Flow Time by a Genetic Algorithm
This paper presents a novel, integer-linear programming (ILP) model for an identical parallel-machine scheduling problem with family setup times that minimizes the total weighted flow time (TWFT). Some researchers have addressed parallel-machine scheduling problems in the literature over the last three decades. However, the existing studies have been limited to the research of independent jobs,...
متن کاملRobust capacity expansion of network flows
We consider the problem of expanding arc capacities in a network subject to demand and travel time uncertainty. We propose a robust optimization approach to obtain capacity expansion solutions that are insensitive to this uncertainty. Our results show that, under reasonable assumptions for network flow applications, such robust solutions can be computed by solving tractable conic linear problem...
متن کاملImproved teaching–learning-based and JAYA optimization algorithms for solving flexible flow shop scheduling problems
Flexible flow shop (or a hybrid flow shop) scheduling problem is an extension of classical flow shop scheduling problem. In a simple flow shop configuration, a job having ‘g’ operations is performed on ‘g’ operation centres (stages) with each stage having only one machine. If any stage contains more than one machine for providing alternate processing facility, then the problem...
متن کامل